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Abstract

This paper addresses the problem of searching paths in a graph-based model of the environment for mobile robot navigation.
Unlike conventional approaches, where just a scalar cost (or a scalar function combining several costs) is to be optimized, this
paper proposes a multicriteria path planner that provides an e�cient and natural way of both de®ning and solving problems in

which con¯icting criteria are involved. In particular, the multicriteria METAL-A� algorithm is used as the core of a mobile
robot global path planner. This algorithm has been implemented and tested in the RAM-2 mobile robot for indoor navigation.
The results presented demonstrate the performance of the algorithm when dealing with energy-consumption, temporal, and

clearance restrictions on the paths. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

To achieve an autonomous navigation capability, a
mobile robot must be able to plan a suitable path
between a start and a destination in the environment.
In large-scale space, i.e. environments where spatial
structures are on a signi®cantly larger scale than the
sensory horizon of the observer (i.e. buildings)
(Kuipers et al., 1993), this process involves two di�er-
ent problems: ®rst, to provide a global path in terms
of intermediate subgoals and, second, to travel
between consecutive subgoals while avoiding unex-
pected and moving obstacles along the way. The latter
problem has received great attention in the literature,
with important contributions ranging from completely
reactive techniques (Khatib, 1986; Borenstein and
Koren, 1991) to planned trajectories that take into
consideration di�erent constraints: non-holonomic kin-
ematics (Canny, 1988; Lozano-PeÂ rez, 1983), dynamics
(Latombe, 1991), time (Hu et al., 1993), etc.

On the other hand, the problem of global path gener-

ation is tightly related to that of decision-making.
Provided that a graph-based model of the environment
is available, this problem is usually addressed on the
basis of some kind of optimal graph search by using a
certain cost function (Hart et al., 1968; Dijkstra, 1959).

Usually, the cost function depends on a unique cost
variable, e.g. the distance travelled or the time spent.
More sophisticated planners combine these with other
factors; e.g. energy consumption, safety, or the robust-
ness of the path indicated by its clearance (Hu and
Brady, 1997; Stentz and Hebert, 1995), the probability
of encountering moving obstacles (Fujimura, 1995;
Simmons et al., 1997), etc. These approaches su�er
from the following limitations:

. The set of factors or variables to be considered for
the cost function are of such di�ering natures that,
in practice, they cannot be combined in an easy and
intuitive way. Typically, the function is built up as a
weighted linear combination of them. The weights
are chosen on an ad-hoc basis, and cannot be
applied to a wide range of situations.

. In many missions it is not important for the mobile
robot to optimize the value of the cost function, but
to satisfy some restrictions on the cost variables, for
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example, to reach a place before a given time (not
to optimize the arrival time). This is supported by
the way in which human beings solve real-life plan-
ning problems. Often, the restrictions are in con¯ict
with each other, and the path found by a classical
graph search algorithm, although optimal, does not
guarantee to satisfy all of them.

An intelligent mobile robot should be provided with
more ¯exible and realistic mechanisms to plan global
paths when operating in large-scale environments. To
make the reasoning behind this statement clearer, con-
sider the following examples.

Assume that a mobile robot path planner uses a

cost function that is a combination of path length and

energy consumption. These factors may become con-

¯icting, since the shortest path may contain very

power-demanding elements, such as ramps or a great

number of turns. During a mission, the mobile robot

may detect that the battery is below the emergency

level, and decide to plan a path to the only available

recharging station (the destination). A path provided

by a classical optimization technique will be optimal

with respect to a given combination of both distance

and energy factors, but it will not guarantee to ®nd a

Fig. 1. The METAL-A� pseudocode algorithm.
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(probably existing) path that enables the robot to
reach the station before the battery becomes
exhausted.

Another typical situation arises when a mobile robot
must deal with time scheduling. In many real robot ap-
plications, there exists the need to coordinate the oper-
ation of the robot with other processes (or robots).
This leads to temporal restrictions that must be priori-
tized in order to accomplish the mission successfully.
For example, a mobile robot is sent to pick up an
object at a given place, and carry it to a delivery
point. If the object is not available until a certain time
T, it is not worth being at the pick-up place before T,
waiting for the object to be ready. Therefore, optimiz-
ing the arrival time at the pick-up place as soon as
possible would not be required: just arriving at T is
necessary. This provides the path planner with a mar-
gin within which to accomplish other important objec-
tives such as energy consumption, safety of the path,
vehicle degradation, etc.

These examples show that in many situations the
robot must plan a path whose cost variables are below
(or above) a given value. In Operations Research (OR)
terminology, this value is called an ``aspiration level'',
and the variable/aspiration-level pair is called the
``goal''. Following this terminology, one could say that
``energy consumptionEK'' or ``arrival timeET1'' are
goals for the planned path. Notice that the word
``goal'' may also have other meanings, for example,
the destination point of a path, etc. In the rest of this
paper the term ``goal'' will always be used with its OR
meaning. Formulating the problem as a set of goals is
a more natural and ¯exible manner of specifying the
requirements for optimizing con¯icting criteria.

The approach presented here for global path plan-
ning relies on a general algorithm for search problems
with lexicographic goals, named METAL-A�, which
was ®rst introduced in a previous work by the authors
(Mandow et al., 1999). METAL-A� allows the di�er-
ent goals involved in a path-®nding problem to be
arranged into several prioritized groups, and the best
possible solution path to be found according to the
assigned priorities.

The organization of the paper is as follows. In
Section 2 an informal survey of lexicographical goal
path planning is given. Section 3 describes the appli-
cation of the METAL-A� algorithm to mobile robot
path planning (the algorithm is shown in Fig. 1 in
pseudocode, and explained in Appendix A). Section 4
presents the experimental results and discussion.
Finally, some conclusions are outlined.

2. Search problems with lexicographic goal satisfaction

Multi-Criteria Decision Theory (MDT) is a suitable

framework in which to solve the problem of ®nding
paths that must satisfy a set of possibly con¯icting
objectives. As discussed above, in this paper, objectives
are considered in the form of goals, which are formu-
lated as inequalities:

E
function �variable� � value:

e

For example:

time E5 min :;
distance E100 m:;
safety e90%:

If these goals are grouped into a number of priori-
tized levels, the problem is called a search problem with
lexicographic goal satisfaction.

A solution path P that connects a pair of start and
destination node locations in the graph is a sequence
of nodes (n1, n2, . . . , nm ) such that for two consecutive
nodes ni and ni + 1 there is an arc between them. The
total cost for P is the sum of the costs of each arc of
P. The costs for each arc are represented as a vector
of positive values:

K�ni, nj � �
ÿ
cost1�ni, nj �, cost2�ni, nj �, . . . , costq�ni, nj �

�
where costk (ni, nj ) refers to the cost of traversing
the arc (ni, nj ), measured with respect to the k-th
cost variable (i.e. energy consumption, distance, time,
etc.).

The total cost vector K(P ) of a path P is de®ned as
the addition of the costs of all the arcs in P,

K�P � � ÿcost1�P �, cost2�P �, . . . , costq�P �
�

where

costk�P � � S costk�ni, nj �:
A solution path P for a particular problem is

said to be dominated if there exists another solution
path P ' that improves at least one component of the
cost vector K of P while not making the others
worse. A lexicographic goal search problem consists of
®nding a non-dominated solution path in the graph
that satis®es a set of goals grouped into prioritized
levels. Each level L is a set of weighted goals in the
form

costLi�P �EtLi ;wLi

where costLi (P ) is some component of the total cost
vector of P, tLie0 is the corresponding aspiration
level and wLie0 is the associated weight, i. e., the
relative importance given to the satisfaction of the
goal in the level L. In this way, the complete problem
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is stated as:

Level 1: cost11(P)E t11 ;w11

. . .
cost1r(P)Et1r ;w1r

Level 2: cost21(P)E t21 ;w21

. . .
cost2s(P)Et2s ;w2s

Level q: costq1(P)E tq1 ;wq1

. . .
costqz(P)E tqz ;wqz

8i, j tije0.

The goals of level i are in®nitely more important
than those of level i+ 1. This means that goals in
level i + 1 are only taken into account once all the
goals in level i have been fully satis®ed.

In this work, an algorithm called METAL-A� is

used to solve these type of problems within the ®eld of
mobile robot path planning. METAL-A� can be used
to ®nd one non-dominated solution path for lexico-
graphic goal-satisfaction problems with an arbitrary
number of goals at each priority level. Further details
can be found in (Mandow et al., 1999). A brief expla-
nation of the algorithm is given in Appendix A.

3. The RAM-2 multicriteria path planner

A path planner based on the METAL-A� algorithm
has been implemented on the RAM-2 mobile robot for
navigating in indoor, structured environments (Fig. 2).
RAM-2 is equipped with a manipulator and a variety
of sensors such as video-cameras, a radial laser range-
®nder, a sonar ring, and an odometric system. Two
onboard Pentium 120 MHz PC cards run the Lynx
real-time operating system, as well as a software sys-
tem called NEXUS (Fernandez and Gonzalez, 1998),
that takes care of the communication and coordination
between di�erent modules of the robot's control archi-
tecture.

The RAM-2 navigation system relies on two mod-
ules:

A METAL-A� path planner, that generates a global
path based on the information provided by a graph-
based model of the world (Fernandez and
Gonzalez, 1997). The nodes of the graph are distinc-
tive places in the buildings where RAM-2 navigates.

A reactive navigator, that drives the robot between
locations on the global path, based on the infor-
mation provided by the sensors (Fernandez and
Gonzalez, 1998; Gonzalez et al., 1995).

The RAM-2 path planner takes into account a number
of factors when searching for paths in the graph model
of the environment. They include the time elapsed and
the energy consumed in traversing each arc, as well as
an estimation of the probability that an arc will not be
blocked. In the following paragraphs, these factors are
considered.

3.1. Clearance

Due to the dynamic characteristics of the environ-
ment, some possible paths may be blocked with a cer-
tain probability, i.e., some doors may frequently be
closed, while others are almost always open.
Obviously, if the selected path is blocked along the
way, the robot will need to replan its path and take
more time to reach its destination. A probabilistic
measure of the overall clearance of a path can be
de®ned as the product of the clearance probability of

Fig. 2. The RAM-2 mobile robot. The METAL-A� algorithm has

been implemented and tested in this platform for global path plan-

ning.
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its component arcs, assuming conditional independence
among them.

3.2. Time

Minimizing the time, or at least reducing it to
reasonable limits, is an essential and straightforward
requirement in any robotic task. It has been included
as the second goal.

3.3. Energy consumption

Finally, an additional factor has been added to keep
battery consumption low. This ensures that the robot
will reduce its battery consumption whenever this re-
duction does not con¯ict with the satisfaction of pre-
vious goals. Thus the undesirable and slow battery
recharge operation is postponed for as long as poss-
ible.

This can be summarized with a goal formulation as

follows:

Priority level 1: pfree�Path�eKf

Priority level 2: time�Path�EKt

Priority level 3: battery consumption�Path�EKc

i.e. try to ensure that reasonably safe paths will be
found (above Kf% free), and then try to take the
robot to its destination quickly enough (in less than Kt

seconds) and consuming less than Kc units of energy.
Notice that Kf, Kt and Kc are values that can be easily
speci®ed for each navigational task, depending on the
internal status of the robot or on explicit operator
commands.

The implementation of the ®rst goal
( pfree(Path )rKf ) requires some special consider-
ations. In order to keep the clearance probabilities
above a certain level, the planner should maximize a
multiplicative cost function. However, since the im-
plementation of METAL-A� has been designed follow-
ing A�, it can only solve problems by minimizing

Fig. 3. A 2-D map of the ®rst ¯oor of the Electrical Engineering building, where RAM-2 navigates. The distinctive places that appear in the

graph model of the environment are indicated as labelled circles. Their actual coordinates with respect to a global reference frame are also

shown.
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additive cost functions. The original goal has been
reformulated to ®t the search algorithm.

Let pfree(P ) be the probability that the path P is
free, and let pfree(i ) be the probability that each arc i
of the path P is free. If the probabilites pfree(i ) are con-
ditionally independent, then:

pfree�P � �
Y
i

pfree�i� 8 arc i 2 P:

The former multiplicative function can be changed
to an additive cost function using logarithms:

max pfree�P � � max
Y
i

pfree�i� � max exp

"X
i

ln�pfree�i ��#

Since 0Epfree(i )E1, then ÿ1E ln( pfree(i ))E0,
and:

max pfree�P � � min
X
i

�� ln�pfree�i ��
��:

This function can be used whenever the following

reasonable assumption holds,

pfree�i � 6� 0 8 arc i 2 G

i.e. no arc in the graph G is permanently blocked.
If, for instance, Kf=90%, the problem is reformu-

lated, so transforming the goal

pfree�P �e0:9

toX
i

�� ln�pfree�i��
��E�� ln�0:9��� � 0:10536

and using vln( pfree(i ))v as an additive cost measure for
each arc i in the graph.

4. A real experiment

This section presents an example of the application
of the METAL-A� algorithm to the navigation of a
mobile robot. In this section a particular experiment is
described, and its results are compared to those that

Fig. 4. Graph model of the building. The nodes represent distinctive locations for navigation.
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would have been obtained by a conventional optimiz-
ation-based path planner.

Figs. 3 and 4 show the 2-D map and its correspond-
ing graph-based model, respectively, used by RAM-2
to navigate its way through the ®rst ¯oor of the
Electrical Engineering buildings at the University of
Malaga. The particular experiment presented here con-
siders the navigation of RAM-2 from the location
Outside:Street (node 5.3) to Robotics Lab:Robotics Lab
(node 3.3).

Fig. 5 shows the costs associated with the arcs in the
graph for each additive cost function. Values for the
costs concerning time and battery consumption have
been estimated by averaging a number of experiments

where RAM-2 was manually guided along the arcs.
On the other hand, the values for clearance probabil-
ities were initially set to 1 for all the arcs except for
those involving passing through doors, which were set
to a priori values based on knowledge of the environ-
ment. All these values are updated dynamically by the
robot as it traverses the buildings during its normal
operation.

An ideal solution path should achieve the optimum
value for all three individual factors considered (clear-
ance probability, time, and battery consumption).
Unfortunately, an ideal solution is rarely reached,
since these objectives are usually con¯icting. The
aspiration level for the ®rst cost variable has been set

Fig. 5. Table of costs for each arc in the graph. Clearance probability, time elapsed and energy consumption are shown.
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to a 90% chance that the path will be clear.
Reasonable levels for the time and battery consump-
tion factors are obtained using the Euclidean distance
from the origin to the destination. Both attributes are
roughly proportional to the distance traversed by the
robot, though signi®cant variations are possible, and
justify separate treatment.

More precisely, if the Euclidean distance from origin
to destination is Dist (meters) and the robot's maxi-
mum speed is maxspeed, (m/s) then it will be impossible
to reach the destination in less than Dist/maxspeed (s).
Similarly, if the robot's minimum battery consumption
rate is minconsumption, (kJ/m) then at least
Dist � minconsumption (kJ) are needed to reach the desti-
nation. Aspiration levels of 150% of these optimistic
values are used for the time and battery consumption
goals in the experiment. Euclidean distance is
measured from the map of the buildings.

Thus, for the RAM-2 mobile robot and the particu-
lar experiment at hand,

max speed � 1:7 m=s
min consumption � 0:7 kJ=m

Eucl dist�node-5:3, node-3:3� � 132:2 m:

The problem goals are formulated as

Priority level 1:Path clearance probability e0:9
Priority level 2:Path time �in s� E116:6
Priority level 3:Path battery consumption �in kJ� E138:8:

A problem that always arises when using a heuristic
search is the determination of the heuristics. If the
robot had a geometric map of the environment,
although approximate, it could employ the Euclidean
distance to compute time and battery consumption
heuristics. However, as RAM-2 is not intended to have
such a detailed geometric representation, no heuristic
information has been used to guide the planner, i.e.
METAL-A� behaves as an uninformed search algor-
ithm.

4.1. Results

The results obtained for solving the above sample
problem can be summarized as follows.

The planner found the only non-dominated solution
to this goal problem (see Fig. 6). The corresponding
values for each variable are,

Fig. 6. Non-dominated solution path found by the METAL-A� algorithm going from the Robotics Laboratory to the Street.
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Clearance probability � 0:9128
Time � 132:9 s

Batt: consumption � 97:86 kJ:

The deviations achieved for each priority level are
(0, 16.3, 0) respectively. It is clear that the time goal
could not be achieved in 16.3 s, but nevertheless the
planner ®nds the fastest path that preserves satisfac-
tion of the clearance goal. Although there is little mar-
gin left for the third goal, METAL-A� recognizes that
there are several paths that satisfy the ®rst goal while
taking 132.9 s, and returns the path with the least bat-
tery consumption.

The solution to this problem is clearly di�erent from
those found by path planners that optimize a single
criterion.

. In the above problem there are many paths that
maximize the clearance probability. These are
equally good to an A�-based planner and hence any
of them could be returned as a solution. Some of
them, however, are clearly undesirable, like the one
shown in Fig. 7.

. The paths that minimize the time for this problem

are shown in Fig. 8. Depending on implementation
considerations, A� may ®nd either. These, however,
have di�erent battery consumption and clearance
probabilities, a distinction that is necessarily lost in
single-objective formulations. Analogous reasoning
can also be used regarding the battery consumption
criterion.

Note also that there is no solution to this problem
that satis®es all the goals. If the problem criteria had
been formulated as constraints and solved again using
a conventional optimizing planner, the result would
have been a failure.

Sometimes problem constraints are inherent to a
problem, and cannot possibly be violated (i.e. physical
constraints like ``the robot's speed cannot be faster
than the speed of light'', or ``the battery consumption
for any mission can never be greater than the maxi-
mum battery capacity''). However, most everyday con-
straints can be viewed as ``soft'' in the sense that their
violation only results in more inconvenient or less pre-
ferred solutions. METAL-A� provides a simple frame-
work to incorporate these so-called ``soft'' constraints
as goals (i.e. in the less important priority levels). As a

Fig. 7. An example of a path that minimizes the clearance probability.
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result, constraint violation never results in failure, but
results in solutions that at least try to achieve the
goals as well as possible, i.e. METAL-A� (and goal-
satisfaction algorithms in general) enables elegant
handling of overconstrained problems.

5. Conclusions

In many practical situations it may not be appropri-
ate to state mobile robot path planning as a conven-
tional optimization problem. What is important is to
avoid fuel exhaustion, not to save a marginal joule; to
reach the destination in time, not a millisecond before.

In this paper, a multicriteria path planner for mobile
robot navigation in large-scale space has been pre-
sented. In particular, the METAL-A� algorithm has
been implemented in the RAM-2 mobile robot.
METAL-A� searches for optimal paths that satisfy the
greatest number of a lexicographically ordered set of
goals. This approach improves upon conventional op-
timization techniques in several ways. It allows con-
¯icting objectives to be dealt with, and provides more

comprehensive path planning. Besides this, it can also
result in a more e�cient procedure: the addition of
new goals can play an important role in reducing the
search e�ort while guiding the planner to the most
convenient paths, even in the absence of heuristic in-
formation.

Appendix A

A1. METAL-A� Algorithm

METAL-A� is basically a ``multicriteria best-®rst''
algorithm: a partial solution path that ``best'' satis®es
the goals of the problem is selected and expanded in
each iteration until a solution path is selected. Only its
fundamental details are described here. For a more
complete reference see (Mandow et al., 1999).

The algorithm uses three typical data structures:

. SGRAPH: a directed acyclic search graph that
records all non-dominated paths found from the
start node to the expanded nodes.

. OPEN: a list of partial solution paths in SGRAPH

Fig. 8. Paths which minimize time, found by a conventional A� algorithm.
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that can be further expanded.
. CLOSED: a list of nodes already explored.

A signi®cant di�erence between A� and METAL-A� is
the use of a vector cost evaluation function for each
path. The cost of each path P is a vector
G(P )=GP(n )=( gP1(n ), gP2(n ), . . . ,gPq (n )). Each com-
ponent in G(P ) stands for some of the individual addi-
tive costs functions considered.

The graph SGRAPH records all non-dominated
paths that reach known nodes. A set G-SET(n ) is used
for each node to record all non-dominated cost vectors
GP(n ) corresponding to paths P = (s, . . . , n ) included
in SGRAPH.

METAL-A� allows the use of heuristic information
to guide search. A multicriteria heuristic function H(n )
is a function that returns a nonempty ®nite set of cost
vectors H(n ) which estimate the cost of some path
from n to a goal node.

H:n4
�
H�n�, H 0�n�, . . .

	
:

A function H(n ) is said to be admissible if for all
non-dominated paths from n to any destination node
there is a cost vector H(n ) in the returned set that
dominates or equals its cost. Therefore, for each node
n in SGRAPH, a set of vector cost estimates for all
known non-dominated paths arriving at n can be cal-
culated as follows:

F-SET�n� � nodom�fF�n� � G�n� �H�n�=G�n� 2 G-SET�n�

and H�n� 2 H�n�g�

where nodom(A ) gives the set of non-dominated vec-
tors of the set A without repetitions.

The algorithm uses the estimated cost vectors to
decide which node to expand at each iteration. All
paths in SGRAPH that can be further expanded are
represented in the OPEN list. Each element in the list
is a pair of the form:

�n, F�, where n is a node in the graph and F 2 F-SET�n�,

i.e. any generated but not yet expanded node will
appear in OPEN as many times as vectors F exist in
F-SET(n ). The operations OPEN(node ) and
CLOSE(node ) are de®ned in the following way:

. OPEN(n1): add to the list OPEN a pair (n1, F) for
each vector F in F-SET(n1).

. CLOSE(n1): delete all pairs (n1, �) from OPEN and
add node n1 to the list CLOSED.

At each iteration a pair (n, F) that minimizes goal de-
viations according to their priorities is selected from
OPEN. METAL-A� accepts several ways to minimize
the deviation from the problem goals. The one used
here is:

di�F � �
Xqi
j�1

wij �max �0, fij ÿ tij �

where qi is the number of goals in the level i, wij is the
weight of the goal j in the same level, fij the cost func-
tion for that goal, and tij is its aspiration level (see
Section 2). Thus the deviation for each priority level i
is measured as the weighted sum of positive deviations
of each cost function fij from its aspiration level tij.
Note that if fijEtij then no deviation is measured,
since the goal is satis®ed.

It can be shown that METAL-A� is complete and
admissible when used with an admissible multicriteria
heuristic function, i.e. the ®rst solution found is non-
dominated and satis®es the goals in the best possible
way according to their priorities.
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